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Dynamical System Related to Quasiperiodic 
Schr dinger Equations in One Dimension 
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A dynamical map is obtained from a class of quasiperiodic discrete Schr6dinger 
equations in one dimension which include the Fibonacci system. The potentials 
are constant except for steps at special points. 
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1. I N T R O D U C T I O N  

There has been much interest in the quasiperiodic Schr6dinger equation 
and its finite-difference analogue (for review see, e.g., refs. 1). Since 
Floquet's theorem holds only for periodic systems, there is an interesting 
localization problem even in one dimension. There is a tendency for the 
spectrum to be a Cantor  set, i.e., a closed set with no isolated points and 
whose complement is dense. 

A lot of attention has been paid to the study of dynamical systems and 
much progress has been made in recent years. Some dynamical systems 
(strange attractor, Smale horseshoe, etc.) also have Cantor  sets. Therefore 
it is desirable to have some connection between these two different areas of 
physics so that the theories of the dynamical systems can be applied to 
problems of condensed matter  physics. 

Kohmoto  e taL  ") and Ostlund e t a L  (3) showed that the transfer 
matrices of a special quasiperiodic Schr6dinger equation obey the following 
recursion relation: 

Mr+ 1 = Mr_ 1M/ (1) 
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where Mz is a 2 x 2 real matrix with unit determinant. Let us write Mo = B 
and M1 = A. Then we have M2 = BA, M 3 = ABA, M 4 = BAABA, ~md so 
on. The sequence of two letters A and B constructed in this way is called 
a Fibonacci sequence. 

One of the purposes of this article is to review the derivation of this 
dynamical system from the d = 1 quasiperiodic Schr6dinger equation. The 
other is to present a more general class of equations which eventually can 
be studied by the same dynamical system. 

2. TRANSFER M A T R I X  FOR THE QUASIPERIODIC  M O D E L  
A N D  ITS RECURSION RELATION 

The quasiperiodic (discrete) Schr6dinger equation in one dimension is 
written 

tp.+ l + ~b._ 1 + V(nr tp.= E~p. (2) 

where V is periodic, i.e., V(t+ 1)=  V(t), and co is an irrational number. It 
is traditional to introduce a transfer matrix in one-dimensional problem's: 

~ .+1 = M(mo) 5u (3) 

where 

and M is the transfer matrix given by 

M(t )=(E-1V( t )  - 0 )  

The matrix satisfies M ( t + l ) = M ( t )  and d e t M ( t ) = l .  Higher-order 
transfer matrices are also defined, 

~ .+k  = M~k)~. (4) 

where 

M(k)(t) ---- M(t + (k - 1)e~)-.-M(t + co) M(t) (5) 

For a quasiperiodic system, the evaluation of M (k) for a large value of 
k is very delicate. The system tries to repeat itself on many length scales. 
However, it fails to do so and the degree of the failure depends on the 
incommensurability and the length scale. 
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We use a recursion relation to calculate M (k). This follows the spirit 
of the renormalization-group theory. Divide k into two integers kl and k2; 
then the transfer matrix M(~)(t) is written 

M(k)(t) = M(kl)(t + k2co) M(k2)(t) (6) 

In order to implement the recursive structure in this equation, write 
k = El+ 1, kl = Ft_ 1, k2 = Fl; moreover, M (F~) - Mr. We have 

Mr+ l(t) = i z _  l(t + Fzco) i , ( t )  (7) 

where Ft is a Fibonacci number defined by F, + 1 = F,_ 1+ 17, and Fo = 
FI = 1. 

One of the main obstacles to calculating the transfer matrix using (7) 
is the presence of Ftco on the right-hand side. This gives the dependence of 
Mt on its argument. The first step to overcome this difficulty is to choose 
an irrational number co such that T)e) is close to an integer. Note that 
M , ( t +  1 ) = M , ( t ) ,  so the argument of M,  is defined on a circle. The best 
choice of co is the inverse of the golden mean co*= (x / -5 -1 ) /2=0 .618  .... 
since it satisfies 

F, co* = r , _  l - ( - c o * )  '+1 (8) 

The difference between Ftco* and the integer E~-i becomes geometrically 
small for large ]'s. The recursion (7) is then written as Mt+I(0)--- 
MI_ i ( - ( - c o * ) t + l ) M r ( 0 ) ,  where t has been set to be 0 for simplicity. 

The second step is to construct potentials V(t) which give 

Mr_ 1( - ( - co*)~+ 1) = i t _  1(0) (9) 

so that we have the simple recursion relation (1) which does not contain 
arguments. The condition (9) can be simply satisfied by a constant poten- 
tial where the incommensurability is lost and the problem is solved 
trivially. In order to have a nontrivial model, we must allow a potential to 
have steps. Then, the potential takes a discrete set of values. Recall that (5) 
is rewritten as 

M,_l(t)=m(t+(r,_l-1)co*)...M(t+co*)M(t) (10) 

From this we learn that discontinuities must lie outside the following 
intervals: 

1l: [ n e ) * , n c o * - ( - c o * ) t + l ] ;  n = 0 , 1 , 2 , . . . , F t  1 - 1  (11) 

in order that (9) be satisfied. The points nco* are always on the edges of 
the intervals which lie on either side of those points, depending on whether 



794 Kohrnoto 

l is odd or even. In order to control the intervals, it is useful to write (11) 
in terms of m = Fl_ 1 - n .  A little algebra using (8) gives 

It: [ - m 0 ) * - ( - 0 ) * ) t , - m 0 ) * - ( - 0 ) * ) 1 0 ) * 2 ] ;  m = l ,  2 ..... El_ 1 (12) 

Each of these intervals has a length 0),t+~ and the edges approach the 
points -m0)* as I becomes large. The points -m0)*, m = 1, 2,..., F t_ l ,  are 
clearly outside the "bad" intervals It, so we can have discontinuities at 
those points. Kohmoto et  al. (2~ chose the simplest possible potential, which 
has two discontinuities at - 0 ) * =  0)*2(rood 1) and -209*= -0)*3(mod 1), 
i.e., 

V(t)= Vo for -0)*<t-..< - - 0 )  *3 

(13) 
= V1 for -09*3< < t ~  _0),2 

For this potential, it can easily be shown that the recursion (1) holds for 
all l>~ 1. 

Note that the two discontinuities could have been placed on different 
points. By choosing an appropriate original site for the transfer matrix, one 
discontinuity can always be placed at -0)*. Suppose the other discon- 
tinuity is at -moo)*; then the recursion (1) holds for l ~> lo, where Io is the 
smallest integer which satisfies Ft0-1>~ too. In other words, at some earlier 
steps, the simple recursion (1) does not hold because transfer matrices of 
different arguments are needed. At the step lo, the original potential with 
the discontinuities at -0)* and -moo)* can be regarded as having been 
renormalized to the potential (13) with appropriate values of Vo and V1. 

The results described above can easily be generalized to potentials 
which have more than two discontinuities at points -k0)*, where k is an 
integer. Those points are dense on the circle. The intervals between the dis- 
continuities are always commensurate with 0)*, i.e., no)* mod 1 (n = 1, 2,...). 

The sequences obtained in this manner are of course not the original 
Fibonacci sequence. But it looks like a renormalized Fibonacci sequence 
A ' B ' A ' A ' B ' A ' B ' A ' . . . ,  where A' and B' are blocks of more than two different 
letters. It does not possess the inflation-deflation invariance in terms of the 
letters. 

3. C O N C L U D I N G  R E M A R K S  

The trace of the transfer matrix Mt gives the following mapping 
problem(2): 

(x t+ 1, Yt+ 1, zt+ i) = (2x l  y t -  z t ,  x l ,  Yl) (14) 
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where x t = l / 2 T r M l ,  y i=xt_ l ,  and zt=xz_2, There is a conserved 
quantity for this map given by 

I=x~ + y~ +z~--2x, ylz,-- 1 (15) 

This determines a two-dimensional manifold on which the dynamical 
system (14) is defined. The manifold is noncompact and is simply con- 
nected for I > 0 .  ~4~ 

The cycles of the map were studied by Kadanoff. ~5) Kohmoto and 
Oono (4) found homoclinic and heteroclinic points for the map. This 
explains the Cantor-set behavior of the energy spectrum of the 
quasiperiodic Schr~Sdinger equation. From a fixed point analysis one can 
derive the scaling behavior of the spectrum, which has previously been 
found numerically. ~6) 

The conjecture ~4) that the Fibonacci model defined by (2) and (13) has 
a singular continuous spectrum was recently proven by Suto ~7) following 
the theorem of KotaniJ 8) The wave functions corresponding to a singular 
continuous spectrum are expected to be neither extended nor localized 
in a standard manner. In fact, the multifractal properties of the wave 
functions of the Fibonacci model was studied by Fujiwara eta[. ~9) 

In summary, we have shown that a class of quasiperiodic discrete 
Schr6dinger equations (2) with periodic function V(t) which is constant 
and have a number of discontinuities at points -kco* mod 1, where k is an 
integer and co*=( , , f5 -1 ) /2 ,  has the same universal properties as the 
Fibonacci model. Namely, the spectrum is a Cantor set with zero Lebesgue 
measure and is singular continuous. The wave functions are critical, i.e., 
neither extended nor localized in a standard manner. 

This result may prove useful to understand the problem of interacting 
electrons on a Fibonacci lattice. Recently Hiramoto ~~ studied such a 
model within the Hartree-Fock approximation. He found numerically that 
the spectrum remains singular continuous when the electron correlation is 
introduced. The effective potential function which gives the Hartree-Fock 
one-body problem is constant except at number of discontinuities. The 
discontinuities seem to be at points -kco* rood 1, within the numerical 
accuracy. (H~ Thus, the present work explains the numerical result that the 
singular continuous spectrum is rigid against the effects of electron correla- 
tion. 
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